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ABSTRACT 

The homogeneous turbulence problem is  formulated by first speci-  

fying the multipoint veloci ty  cor re la t ions  or t h e i r  spec t r a l  equiva- 

l e n t s  at  an i n i t i a l  time. Those quant i t ies ,  together with the corre- 

l a t i o n  or spec t r a l  equations are then used t o  calculate  i n i t i a l  time 

der iva t ives  of correlat ions or spectra.  The der ivat ives  i n  tu rn  a r e  

used i n  time series t o  ca lcu la te  the evolution of turbulence quan t i t i e s  

with t i m e .  When the problem i s  treated i n  t h i s  way the cor re la t ion  

equations are closed by the i n i t i a l  spec i f ica t ion  o f  the turbulence 

and no closure assumption i s  necessary. An exponential series which 

i s  an i t e r a t i v e  solut ion of  the  Navier-Stokes equations gave much 

better r e s u l t s  than a Taylor power series when used with the limited 

available i n i t i a l  data. I n  general ,  the  agreement between theory and 

experiment was good. 

INTRODUCTION 

A bas ic  d i f f i c u l t y  i n  the usual  analyses of homogeneous turbulence 

i s  t h e  closure problem; tha t  is, the set of correlat ion o r  moment equa- 

t i o n s  contains more unknowns than equations. The problem occurs, of 

course, because of the nonl inear i ty  of the Navier-Stokes equations 

from which the cor re la t ion  equations are 0btained.l 
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Although many approximations have been introduced i n t o  the corre- 

l a t i o n  equations ( o r  equivalent spec t r a l  equations) i n  attempts t o  

obtain closure, those suggestions have varying degrees of  a rb i t ra r iness .  

The analyses i n  Refs. 2 and 3, although based on d e f i n i t e  physical  

ideas,  contain dimensionless constants which must be determined by 

experiment. 

have other d i f f i c u l t i e s .  

i n i t i a l  condition f o r  which it has been worked out, sometimes gives  

negative energies. 

r e s u l t s  for moderately weak turbulence but  become unduly complex f o r  

Those i n  Refs. 4 t o  7, although somewhat more deductive, 

That i n  Ref. 4, a t  least fo r  the r e s t r i c t e d  

8 The analyses i n  Refs. 5 and 6 give reasonable 

high Reynolds numbers. That i n  Ref. 7, although it has yielded some 

r e a l i s t i c  deductions, a l so  has computational d i f f i c u l t i e s  because of  

i t s  complexity. 

There i s  another way of looking a t  the problem of  homogeneous 

turbulence. 

a statement of  that problem, 

e s sen t i a l ly  this :  given the s t a t i s t i c a l  state of  a homogeneous turbu- 

l e n t  f ield a t  an i n i t i a l  i n s t an t ,  t o  pred ic t  the evolution of the tur- 

bulence ( i n  probabi l i ty)  as a function of time. 

s p e c i Q  a turbulent  f ield at an i n i t i a l  t i m e ,  it i s  necessary t o  give 

a l l  of the multipoint ve loc i ty  cor re la t ions  or their spec t r a l  equi- 

valents  a t  that time,’ It is not  hard t o  show that, given these multi- 

point  cor re la t ions  and the correlat ion equations, a l l  of the time de- 

r i v a t i v e s  of  the turbulent  energy tensor and of other per t inent  turbu- 

lence quantities can be calculated.  These time derivatives can then be 

I n  order not t o  l o s e  sight of our goal w e  w i l l  first give 

The statement given by Batchelor i s  

I n  order t o  completely 



3 

used i n  a series, f o r  instance a Taylor series, t o  calculate  the 

evolution of the turbulent  energy tensor (or  of t h e  equivalent energy 

spectrum tensor)  and of other turbulence quant i t ies .  

It i s  noted that when the turbulence i s  t r ea t ed  i n  t h i s  way, there  

i s  no longer a closure problem. 

o n l y  t o  r e l a t e  the  correlat ions a t  an i n i t i a l  time t o  their  t i m e  de- 

rivatives, and those cor re la t ions  must be given i n  order t o  have a 

complete spec i f ica t ion  of the turbulence at that t i m e .  

p rac t ice  o n l y  a small number of the correlat ions,  and thus of their  time 

derivat ives  will ordinar i ly  be available, but  a su f f i c i en t  number may 

be known t o  give a reasonably good representation. 

The cor re la t ion  equations are used 

O f  course, i n  

It might be pointed 

out that even i n  those analyses which requi re  a closure assumption, the 

turbulence should be specif ied f n i t i a l l y  by i t s  correlat ions or  spectra  

s ince the cor re la t ion  equations requi re  i n i t i a l  conditions. 

Kraichnan 9 has very recent ly  studied the convergence proper t ies  of 

series such as those considered here. 

that author”, it is not necessary that an expansion be convergent i n  

order t o  be useful-, s ince divergent series can provide excel lent  asymp- 

t o t i c  approximations 

As mentioned i n  another paper by 

11 

Ln the present paper w e  will not concern ourselves primarily with 

convergence questions but w i l l  use as a t e s t  the  agreement with exper- 

iment of  the r e s u l t s .  

good r e s u l t s  i f  su f f i c i en t  s t a t i s t i c a l  information were available a t  

t h e  i n i t i a l  time, it w i l l  be seen tha t  an exponential series which arises 

i n  a study of  the  nonlinear decay of a disturbance i n  a fluidL2 Is much 

Although a Taylor series would no doubt give 
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more sa t i s f ac to ry  when a limited amount of i n i t i a l  information is  avai l -  

able. 

ative solut ion of the Navier-Stokes equations and thus contains informa- 

This i s  not surpr is ing s ince the exponential series i s  an i t e r -  

t i o n  which i s  not contained i n  t h e  Taylor series. The r e su l t i ng  formu- 

l a t i o n  gives r e s u l t s  which are i n  qu i t e  good agreement with the  avail- 

able experimental data. 

INITIAL TIME DWIVATIVES AND SIMPLE EXPANSIONS 

As mentioned i n  the  introduction, i f  the multipoint correlat ions 

are known at an i n i t i a l  i n s t an t ,  as they must be for  a complete spec- 

i f i c a t i o n  of t h e  turbulence a t  tha t  i n s t an t ,  then the time derivat ives  

of the correlat ions can be calculated from the correlat ion equations. 

For i l l u s t r a t i v e  purposes we w i l l  consider the derivatives of  the turbu- 

l e n t  energy tensor u.u'., where ui and u! are respect ively 

veloci ty  components at  the points  P and P' separated by the vector 

?, 
derivative of u u' at  t = tl is  given d i r e c t l y  by the two-point 

correlat ion equations' evaluated at  t = tl: 

_I_q_ 

1 J  J 

and the overbar ind ica tes  an averaged value. Then the first time 
_I__ 

i j  

- a - --q t"tl t=t 
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where the  pressure-velocity correlat ions are given by 

_I_ 

and a similar equation for ( ~ ~ p ' ) ~ = ~ ~ *  The per t inent  solution of 

Eq. (2) is1 

.A 
where u'! 

J 
ion i s  over a l l  s space. This  solution i s  for an i n f i n i t e  f lu id ,  f o r  

which case the boundary conditions are that 

r = 0 and zero fo r  r = %. The quantity p i s  the  density, y i s  

i s  the veloci ty  at the  point .;;$I = r;? - s, and the in tegra t -  
-5 

- 
pu! 

J 
i s  bounded f o r  

J A 

Che kinematic v i scos i ty  and p i s  the pressure. A repeated subscript  

i n  a tern indica tes  a swamation, w i t h  the subscript  successively taking 

on the values 1, 2, and 3.  The correlat ion equations are, of courses 

derived *om 

t=tl can be 

point t r i p l e  

the Navier-Stokes equations. The quantity t at  
__._ 

calculated from Eqs. (1) and (2) i f '  u4u: and the two- 

correlat ions are known 

The second time derivat ive of 

the two=point correlat ion equations 

This gives 

J J  

a t  t=tl. 
_1_ 

u.u' i s  obtained by d i f fe ren t ia t ing  
L J  

and evaluating the r e s u l t  at  tl$ 
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and 

The quant i ty  [(a/at)(u,ug";,) It=, 
three-point correlat ion equation$ wr i t ten  fo r  t=tl and ?' = ?. 
(The vect;or ?' separates the points  P and P".) Thus 

i n  Eq. (3)  i s  obtained f'rom the  
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where (puJ% -> +., i s  given by 
1 
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Similar equations are obtained for  the other pressure-velocity corre- 

la t ions .  

Eq. (2); that is, puj3";: is bounded fo r  ? or i$ = 0 and zero for 

The boundaccy conditions for Eq. (6) are similw t o  those for 
I 

? or F' m m. &so, an expression fo r  i n  (3)  

i s  obtained by l e t t i n g  ?' = 0 instead of ?' = * i n  Eq. (5). Thus, 

i f  t he  turbulence i s  specif ied su f f i c i en t ly  well at t=tl tha t  the 

double, t r i p l e  and quadruple velocity correlat ions are knQwn, 

can be calculated. Similarly higher-order derivatives (a 2 ~ p  L t t=t, 
L 

are obtained by considering four or more point correlat ions i n  the turbu- 
6 l e n t  f i e l d  . With the time derivatives of  u ' u '  known at t=tl, a 1 3  

__I 

faylor series gives u u' a s  a f'unction of time as i d  
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2- 

+ L  ( 3 3 )  (t " t1)2 + * . * ( 7 )  
t'tl 2 >! 

A similar analysis  can be ca r r i ed  out i n  wave number space. For 

instance,  t he  energy spectrum function E, which shows t h e  contribu- 
- 

t i ons  at various wave numbers t o  uiui/2, can be wr i t ten  as 

where a E / a t  

cor re la t ion  equation (Eq. ( 9 )  i n  ref. 5) as 

is  obtained from t h e  Fourier transform of t h e  two-point 

where dA is  an element of surface area of a sphere of radius  K ,  

-4 A 
IC i s  t h e  wave number vector corresponding t o  the  spac ia l  vector 

and cpii and cpiki ' a r e  respect ively t h e  Fourier transforms of uiu{ 

and uiukui. 

t en  i n  terms of E, and s e t t i n g  t h e  r e s t  of t h e  in t eg ra l  equal t o  T, gives 

r ,  
- 

Extracting from t h e  in t eg ra l  t h a t  portion which can be wr i t -  
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Equation (10) i s  the w e l l  known scalar form of the $wo-point spectral 

equation. The t ransfer  term T produces energy t ransfer  between wave 

numbers and arises from the t r i p l e  correlat ion term i n  Eq. (1) 

(with i = j )  .l (Note that  the pressure-velocity correlat ion terms i n  

Eq * 

The 

(1) drop out f o r  i = j . )  The second $ b e  derivat ive of E is 

(3) a t  t'tl =($) t"tl - 2 V K 2 k )  t'tl 

can be calculated from the two- and three- quantity ( a T p t )  t"tl 
point spec t ra l  equations i f  the two- and three-point spec t ra l  quant i t ies  

i n  those equations are known at 

i n  reference 5 w e  obtain 

t=tl. From Eqs. (20, (23), and (24) 

where 2' i s  the wave number vector corresponding t o  ;I, dK = 

dK1 *2 * 3 ,  and P i j k  and &jkz are respectively the Fourier 
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transforms of u.u!u" and u i u j u ~ u ~ .  If by analogy w i t h  t he  

procedure used for obtaining Eq. (lo), we ex t r ac t  from the  in t eg ra l  
1 J k  

that  portion which can be wrgtten i n  terms of spec t r a l  quant i t ies  

already defined (E  and T) , we have 

n 

where V is  a quant i ty  related t o  the three-point spectra$ tensors  

and pijke. More prec ise ly  we can say that V is a funct ional  'i jk  

of pijk and pijke, 

and Pijke @i j k  

t'tl expr es  s ion  f o r  ( a 'E) t2 

since each value of V deBends on vqlues of 

a t  all poin ts  of space. With Eq. (ll), the  

be comes 

The Taylor s e r i e s  for E then becomes 



Equation (13) was used i n  conjunction with available experimental 

data at an i n i t i a l  time13 i n  an attempt t o  calculate  the  va r i a t ion  with 
_II 

.time of  E and thus of uiuie However, with the available i n i t i a l  

data ((E)t=tl, (TItWtll and (V)t_,l), reasonable r e s u l t s  were not 

obtained except a t  small times (Fig. 2).  It thus appears that i n  order 

t o  obtain good r e s u l t s  by using a simple Taylor series, i n i t i a l  

s t a t i s t i c a l  information of much higher order than that which i s  avail- 

able  would have t o  be given. Thus, an a l t e rna t ive  approach which makes 

more e f f i c i e n t  use of  the i n i t i a l  s t a t i s t i c a l  information and a l so  

incorporates addi t iona l  information fYom the equations of motion w i l l  

be considered. 

A WORKABLE FORMULATION FOR THE DEVELOPMENT OF 

TURBULENCE FROM A GIVEN INITIAL STATE 

I n  order t o  obtain a more e f f i c i e n t  means fo r  calculat ing the 

evolution of turbulence than by a Taylor series i n  time, w e  consider 

an iterative solut ion of the Navier-Stokes equations similar t o  that 

i n  Ref. 12. I n  addition t o  the i n i t i a l  s t a t i s t i c a l  information and 

calculated time derivat ives  we w i l l  then have information about the 

form of the decay l a w  from the  equations of  motion. 

Although a t t en t ion  was confined t o  determinate i n i t i a l  conditions 

i n  R e f ,  12, fo r  the present purposes we can j u s t  as w e l l  assume the 

i n i t i a l  veloci ty  f luc tua t ions  t o  be random or  turbulent.  

sider a f ie ld  of homogeneous turbulence t o  be made up of a very high 

density of  eddies o r  harmonic disturbances i n  wave number space. 

a l l  p r a c t i c a l  purposes then, s ince the density of disturbances i s  very 

Thus, we con- 

For 
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high, the  spectrum of the  turbulence can be considered continuous. 

The veloci ty  and pressure at  any point i n  the  f ield are given by 

and 

The la t ter  equation i s  obtained by taking the  divergence of Eq. 

( 16) and applying the  continuity equation. 

From t h e  spectrum of harmonic disturbances we  a r b i t r a r i l y  se l ec t  
+ + two cosine terms wi th  wave number vectors q and r. Then, the  

veloci ty  associated with those disturbances w i l l  be 

2 2  
ucc = a. cos q x + b. cos r '1 x i 1 1 

where the  superscript  cc on the  veloci ty  indicates  t h a t  it depends 

on two cosine terms. The results t h a t  follow would be the  sane i f  two 

s ine  terms or  a s ine  and a cosine term were considered. If ufc i s  

subst i tuted f o r  ui i n  the  r i g h t  sides of Eqs, (16) and (17), t he  

t i m e  var ia t ions of ai and bi plus addi t ional  harmonic terms are 

obtained. If  we then subs t i tu te  t h a t  new expression i n t o  Eqs. (16) 

and (ly), another expression containing s t i l l  more harmonic terms is  

obtained. I n  each approximation, the l i n e a r  terms of the  Navier-Stokes 
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equations a re  considered as unknown and the nonlinear terms as known 

from the preceding approximation. As shown i n  R e f .  l.2, continuation 

of t h i s  process leads t o  

3 
K 

where 

and 

Comparison of Eqs. (19) t o  (21) wi th  the first and second approxi- 

and b$l = vK2. Also, we mations i n  R e f .  12 shows that  c> = vK 

note that since the two harmonic Components i n  Eq. (18) were selected 

a rb i t r a r i l y ,  expressions similar t o  Eqs. (19) t o  (21) w i l l  be obtained 

2 
K 9 1  

fo r  any other two components. But the nonlinear interact ion of any 

number of harmonic components can be expressed as the  sum of the 

interact ions of pa i r s  of components (Eqs. (37) and (38), R e f ,  12). 

Thus uiy 

be of the form of equations (19) t o  (21) 

the velocity resu l t ing  from a l l  the harmonic components w i l l  

and can be wri t ten as 
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where 

The summations i n  Eqs. (22) and (23) will of course contain many orders 

of magnitude more terms than those i n  Eqs, (19) t o  (21). 

i n i t i a l  conditions are random, the quan t i t i e s  Ai,*, ( 

of uf (no sum on i )  i s  obtained f'rom Eq, (22) by squaring, in tegra t ing  

over a cycle, and using the  orthogonality property of s ines  and cosines, 

Since the 

a ( -*. and 
i , K , q y  

( ) are assumed t o  be random variables. The space-averaged value 9, Q 

This gives 

where 
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( ) were assumed uncorre- a 
i .Ye, q 

I n  obtaining Eq. (25) the  various 

l a t ed .  According t o  Eq. (25), <(A? F ) ~ >  and <(Ai,.,$% i n  Eq. (24) 
I, 

have the  same form, so t h a t  we do not need t o  carry along t h e  super- 

s c r i p t s  c and s. 

We want t o  obtain an averaged form of Eq. (25) which i s  a smoothed 

(but  not o f  i t s  d i rec t ion) .  function of t he  magnitude of  t h e  vector 

I n  order t o  do t h a t ,  w e  divide the  i n t e r v a l  of  K = (KiKi) ~ ' 2  over 

which disturbances occur i n t o  a l a rge  number of small increments Lyc. 

The terms i n  

which corresponds t o  a paxt icular  Lyc. 

i n  Eqs, (24) and (25) axe divided i n t o  groups each of 
d 
K 

(Note t h a t  while t he  magnitudes 

of t h e  various vectors  lying i n  a pa r t i cu la r  Lyc a re  approximately 

equal, t h e i r  d i rec t ions  can of course vary.) The group of terms 

corresponding t o  each & 

which the  values of t he  bi 2 

a value o f  b S ( K ) *  The index s designates a pa r t i cu la r  increment 

i n  t h e  values of ' the bi Also, for  each s, a a w i l l  have an 

i s  then subdivided i n t o  groups i n  each of 

¶ ,9 
i n  do not vary appreciably from 

q 
q#l  

2 
Y ,q* i , K , Q  c 2 average value which we designate by <ai >s . The summation 

¶ Y  

q a  
i n  eq. (25), which appl ies  t o  a pa r t i cu la r  2, i s  then replaced by 



is  the number 
S , ( i >  

which applies t o  a pa r t i cu la r  #, and where n 
\;I 

o f  terms i n  L which are assigned t o  the group s for the component 
9 

qfl  
i. The parenthesis on i indica tes  that the re  i s  no summation on that 

2 
i , K  

subscr ipt .  Then the average value of A 4 i n  the increment dK be- 

comes (see  Eq. (25) ) .  

where n i s  the number of terms i n  that 
K 

q 
4f ' l  I_ 

The expression for uf (Eq. (24))  then becomes 

l i e  in dK. 

To obtain an expression f o r  the energy spectrum function E, w e  
1 note that 
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- u.u = 2 i i  

- - -  - 2 2  
3 where u.u = u: 3. u2 4- u 

Equations (27) and (28) then give 
i i  

S 

where there i s  now a summation on i. If LK i s  very small, w e  can 

w r i t e ,  t o  a very good approximation, 

Equation (30) gives t h e  evolution i n  time o f  the energy spectrum func- 

t i o n  from an i n i t i a l  state which i s  specif ied by the B's and b ' s  

i n  t h e  equation. 

A s  shown i n  t h e  last section, i f  t h e  turbulence is spec i f ied  a t  

an i n i t i a l  i n s t an t ,  t h e  time derivat ives  of E can be calculated a t  



that  i n s t an t  by using the Fourier transformed correlat ion equations, 

Thus, it is  desirable t o  wr i te  the B's and b's i n  Eq. (30) 

i n  terms of E and i t s  der ivat ives  a t  the i n i t i a l  time. That can be 

done by evaluating Eq. (30) and i t s  time der ivat ives  at  

and solving the r e su l t i ng  system of equations f o r  the 33's and b's. 

t = tl 

I n  what follows, we w i l l .  f irst r e t a i n  only two terms of Eq. 

( 3 0 ) ,  since we evidently do not have i n i t i a l  experimental data avail- 

able  t o  evaluate the unknown functions i n  addi t iona l  terms. (The 

equation r e su l t i ng  from the  re ten t ion  o f  three t e r m s  w i l l  be con- 

s idered later. ) Equation (30) can then be wr i t ten  conveniently as 

e 

E = + (1 - C) e 

-2b( K )  (t-t,) -j3;I 
where 0 < C < 1. - -  

For C = 1 Eq. (31) reduces t o  the well-known expression for 

the f ina l .  period of decay.' For the  general  case ( C  # 1) we could 

determine C and b i n  terms of the  first and second derivatives of 

Eq. (31) f o r  t=tl and then evaluate those derivatives by using t h e  

two-point spec t r a l  equations ( see  Eqs. (10) t o  (12)).  The following 

procedure tu rns  out t o  be simpler however. By subs t i tu t ing  Eq, (31) 

i n t o  the spec t r a l  Eq. (10) we get  f o r  tlie energy t r ans fe r  t e r m  
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Then 

Comparing the las t  two members o f  Eq. (33) and using Eq. (11) gives 

From Eqs. (32) and (34) w e  have 

Equations (31) and (32) then become 

and 

From Eq. (11) 



2 1  

= (V)t=tl 
(38) 

where C i s  given by Eq. (35). 

Equations (36) and (37) were obtained by re ta in ing  two terms 

on the  r i g h t  side of  Eq. (30). 

approximation i n  which th ree  terms a re  re ta ined  i n  that  equation. 

If Eq. (.30), w i t h  th ree  terms retained,  is subs t i tu ted  i n t o  Eq, (lo), 

w e  get f o r  T 

We consider next a higher order 

2 2  -2b1( t - tL)  
T = 2B1(K - bl) e 

-2b2( t-t,) 
(39) .t. 2B2(K 2 2  - b2) e 

Equation (39)  contains four  unknown functions which are t o  be deter-  

mined by the i n i t i a l  conditions. For that purpose we use Eq. (39) 

and i t s  first three  derivatives evaluated at t=tl. Thus we obtain 

b2 = - 
TE 4(T: - '-  T1T3 TT2) )" 
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- i 6 b f ( ~ ~  - b, )(b, - b, ) 

and 

where T1, T2 and T3 are t h e  first, second, and t h i r d  time deriva- 

tives of T a t  t=tl. The first  der ivat ive T1 can be wr i t ten  i n  

terms of t h e  functional (V)t=t19 which gives a representat ion of 

th ree  point spec t r a l  quant i t ies  (Eq. (13)) . Equations f o r  higher 

order functionals can be obtained by t h e  procedure used for obtaining 

Eq. (11) f o r  V. Thus by using t h e  four-point spec t ra l  equations i n  

Ref .  6 (Eqs. (11) and (12)) w e  get  

(44) 2 - 2VK V .I. R at-- 
where R 

t i e s  e Simi lar ly  

i s  a functional of three-  and four-point spec t r a l  quanti- 

2 = - 2VK R i- s (45) 

where S i s  a funct ional  of three, four, and five-point spec t r a l  

quant i t ies .  By using Eqs. (ll), (44) and (45), t he  first,  second, 
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and third t i m e  der ivat ives  o f  T a t  t=tl i n  Eqs. (40) t o  (43) can 

be wr i t ten  i n  terms of higher order spec t r a l  quant i t ies  as 

and 

RESULTS AWD DISCUSSION 

A comparison between the experimental data of Uberoi13 and the  

The present theory (Eqs. (36) t o  (38)) i s  given i n  Figs. 1 t o  4.14 

comparison i s  made for  an i n i t i a l  time corresponding t o  

the  experiment (tl = (v/$)t = 0.001818). (X i s  the dis tance down- 

stream f'rom the g r i d  and M is  the  mesh size of the grid.) For the 

i n i t i a l  spec i f ica t ion  of the turbulence values of E and T were 

obtained from Figs. 5, gS and 10 i n  Ref. 13. I n i t i a l  values of V 

were not given d i r e c t l y  i n  Ref. 13 but were estimated f'rom the decay 

data fo r  T and Eq. (11). Except f o r  experimental e r ro r  those values 

w i l l  be the same as those that  might have been measured d i rec t ly .  

X/M = 48 in 
Jk 

The agreement between the predicted and experimental energy spectra  
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fo r  t he  same i n i t i a l  conditions (Fig. 1) appears t o  be qui te  good, con- 

s ider ing the  d i f f i c u l t y  of t he  measurements. 

experimental values of E required t h e  d i f f e ren t i a t ion  of measured one- 

dimensional spectra  and an assumption of isotropy. 

The calculat ion of t he  

- 
Predicted and experimental values fo r  t h e  decay of uiui a re  

p lo t t ed  i n  Fig. 2.  JLThk' agreement betwben thhory and experimht  i s  

excellent fo r  values of t* up t o  about 0.006. ;Note tha t  spectra  

were measured only fo r  values of t* between 0,00182 and 0.00417). 

Elimination of t h e  moderate deviation fo r  might requi re  a 

higher order theory (more terms i n  Eq. (30)), together with addi t ional  

i n i t i a l  s t a t i s t i c a l  information. Alternat ively the  deviation might be 

* 

t* > 0.006 

due t o  t h e  amplification a t  la rge  t i m e s  of s l i g h t  inaccuracies i n  t h e  

measured i n i t i a l  spectra.  "he theo re t i ca l  values for  t* l e s s  than 

0,00182 were calculated by working backwards from the  measured i n i t i a l  

spectra.  Also included i n  Fig. 2 is  a Taylor series solut ion which: 

uses the  same i n i t i a l  information as t h e  exponential series, and t h e  

curve f o r  t he  weak turbulence approximation. 

t h a t  t h e  curve f o r  t h e  weak turbulence approximation i s  not t h e  -5/2 

power decay law usually given for  t h e  f i n a l  period,' but is  t h e  curve 

obtained by using the  measured i n i t i a l  energy spectrum and Eq. (31) with 

c = 1. 

It might be pointed out 

Spectra fo r  t h e  energy t r ans fe r  term T are p lo t ted  i n F i g .  3. 

The experimental and theo re t i ca l  curves a r e  i n  good agreement except 

near t he  value of K where (T)t=tl changes sign. The deviation there  

r e s u l t s  from a mathematical s ingular i ty  i n  Eq. (37 )  when (T)t-t, - = 0. 

However, t h a t  deviation does not seem t o  be serious,  because t h e  real  
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physical curve i n  t h a t  region can eas i ly  be estimated. 

l a r l y  t r u e  s ince it i s  known t h a t  t h e  t o t a l  area enclosed by t h e  

This i s  par t icu-  

T 

spectrum should be zero.' 

be eliminated i f  another term were retained i n  Eq. (30). 

said about t h a t  poss ib i l i t y  i n  t h e  next paragraph.) 

ca r r i e s  over t o  some extent i n t o  t h e  r e s u l t s  f o r  E and %ui. How- 

ever, i f  one does not use values of K close t o  the  point where (T)t=t, 

changes sign f o r  calculat ing E and uiui, t h e  inaccuracies i n  those 

quant i t ies  w i l l  be s m a l l .  It appears t h a t  t h e  overa l l  agreement between 

theory and experiment obtained by using equations (35) t o  (37)  should be 

considered encouraging. 

It appears l i k e l y  t h a t  t he  d i f f i c u l t y  could 

(More w i l l  be 

The deviation a l s o  
- 

- 

For the  sake of completeness, spectra  of t h e  functional V (Eqs. 

(11) and ( 3 8 ) ) ,  t he  t h i r d  i n i t i a l  condition specif ied fo r  t h e  turbulence, 

a r e  p lo t ted  i n  Fig. 4. 

probably within the  uncertainty i n  estimating from t h e  decay data i n  

Ref. 13, except i n  t h e  v i c i n i t y  of t h e  point where (T)t,t, changes sign. 

Thus t h e  theory predicts  t h e  evolution i n  t i m e  of E, T, and V, when 

those quant i t ies  a r e  specif ied a t  an i n i t i a l  time. 

The agreement between theory and experiment i s  

V 

We have not been able  t o  apply a higher order theory t o  Uberoi's 

data, t h a t  is, t o  evaluate three  instead of two terms i n  Eq. (30) by 

using t h e  i n i t i a l  data  given i n  h i s  paper. 

higher order theory t o  an analysis  i n  Ref. 5, s ince f o r  t h a t  analysis  

we can, i n  e f fec t ,  ca lcu la te  as much i n i t i a l  information as i s  desired. 

That analysis  neglects quadruple cor re la t ion  terms i n  t h e  three-point 

correlat ion equations and should apply, f o r  a pa r t i cu la r  s e t  of i n i t i a l  

conditions, a t  t i m e s  somewhat before t h e  f i n a l  period of decay. The 

However, we can apply a 
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i n i t i a l  conditions, as well  as values a t  l a t e r  times, a r e  given by closed 

form equations i n  t h a t  analysis and thus a r e  b e t t e r  defined than may be 

possible  i n  an experiment. For t h e  present purposes, t h e  ana ly t i ca l  

r e s u l t s  from Ref. 5 might i n  f a c t  be thought of as experimental r e s u l t s  

i n  which the i n i t i a l  conditions are specif ied exactly. This i s  because 

for  the  model chosen, t he  analysis i s  exact, and t h e  i n i t i a l  conditions 

used i n  both t h a t  analysis and t h e  present theory correspond t o  (or are 

a pa r t  o f )  t h a t  model. 

The case considered here corresponds t o  Fig. 6 of Ref. 5. Values of 

dimensionless E, T, and time derivatives of T f o r  t h e  i n i t i a l  specif ica-  

t i o n  of t he  turbulence (tl = 0.002) a r e  obtained from Eqs. (40) and (39) i n  

Ref. 5. We can eliminate t h e  t i m e  derivatives of T by introducing V 

(Eq. (11) ) and t h e  higher order functionals R and S (Eqs. (44) and (45)).  

I n  t h e  present case, those quant i t ies  w i l l  a l l  be representations of corre- 

l a t ions  of order no higher than t h e  th i rd ,  s ince terms involving correla-  

t ions  of higher order than the  t h i r d  a re  assumed negl igible  i n  t h e  analysis  

of Ref. 5. 

Figure 5 gives a comparison between r e s u l t s  fo r  T calculated from 

the  present analysis  and those from Ref. 5. The quantity Jo is a con- 

s t a n t  r e l a t ed  t o  conditions a t  t z  = -0.00633 

The s t a r r ed  quant i t ies  i n  Figsc 5 t o  7 are t h e  same as those i n  Figs. 1 t o  4 

i f  we l e t  Jo = M3v2. As  expected, when T is  calculated from Eq. ( 3 7 ) ,  

t h e  agreement with R e f .  5 i s  good except i n  t h e  region where (T)t,t, 

changes sign. 

t h ree  terms i n  t h e  expression f o r  E (two terms i n  expression f o r  T) (Eq. 

(39))  t h e  agreement i s  excellent a t  a l l  values of 

i n  the  equations of Ref. 5. 

However, when a higher order theory i s  used by re ta in ing  

K .  It might be expected 
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t h a t  a similar improvement would be obtained i n  Figs. 3 and 4 i f  a higher 

order theory could be used f o r  comparison with t h e  experimental data  of 

Uberoi. 

Because of t h e  good agreement obtained f o r  T i n  Fig. 5, one would 

E expect t he  calculated energy spectra  t o  a l so  be i n  good agreement with 

those from Ref. 5. Figure 6 shows t h a t  t h a t  i s  indeed t h e  case. I n  order 

t o  show t h e  e f f ec t s  of energy t r ans fe r  between wave numbers, curves f o r  t h e  

f i n a l  period of decay (first term of Eq. (40) of Ref. 5) a re  a lso included 

i n  Fig. 6.  

Figures 7 t o  9 show p lo t s  for t h e  decay of t he  higher-order spec t r a l  

quant i t ies  V, R, and S. The agreement between the  present higher order 

theory and the  r e s u l t s  of Ref. 5 is  very good. Thus by specifying t h e  

i n i t i a l  conditions fo r  E, T, V, R, and S, we can predict  t h e  evolution 

i n  t i m e  of those quant i t ies  by using t h e  present higher order theory. That 

i s ,  t h e  required number of i n i t i a l  conditions i s  no greater  than the  number 

of quant i t ies  whose decay w e  can predict .  

CONCLUDING REMARKS 

If a homogeneous turbulent f i e l d  i s  spec i f ied  a t  an i n i t i a l  i n s t an t  by 

i t s  multipoint-velocity correlat ions (or t h e i r  spec t r a l  equivalents),  t he  

i n i t i a l  time derivatives of those quant i t ies  can be calculated from t h e  

correlat ion or spec t r a l  equations. The development of t he  turbulence i n  

time can then be obtained by using those derivatives i n  a s e r i e s  such as 

a Taylor power se r i e s .  When t h e  problem i s  formulated i n  t h i s  way, an 

assumption fo r  closing the  system of cor re la t ion  equations i s  not required, 

s ince those equations a r e  closed by t h e  i n i t i a l l y  specif ied correlat ions or 

spec t r a l  quant i t ies .  A Taylor s e r i e s  expansion, however, did not give 
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r e a l i s t i c  r e s u l t s  (except f o r  small times) when t h e  l imited i n i t i a l  ex- 

perimental data were used. An exponential s e r i e s  (Eq. (30)), which i s  an 

i t e r a t i v e  solut ion of t he  Navier-Stokes equations worked much b e t t e r  with 

the  l imited i n i t i a l  information. 

In  general, when t h e  energy and t ransfer  spectra  and a quantity 

r e l a t ed  t o  three-point spectra  were specif ied a t  an i n i t i a l  time, t h e  

predicted changes with time of those spectra,  as well  as t h e ,  

turbulent  energy,were i n  good agreement with experiment. 

d ic t ion  of t h e  changes of those spectra  with time i s  evidently an essen- 

t i a l  p a r t  of t h e  homogeneous turbulence problem, the  results a r e  encour- 

aging. 

Since t h e  pre- 

A higher-order theory w a s  given i n  which t h e  above quant i t ies ,  as 

wel l  as two addi t ional  higher order spec t ra l  quant i t ies ,  were specif ied 

i n i t i a l l y .  Very good agreement w a s  obtained between t h e  predicted decay 

of a l l  of those quant i t ies  and t h e  r e s u l t s  for  a previous ana ly t ica l  model 

(Ref. 5) .  

might be thought of as experimental r e s u l t s  i n  which t h e  i n i t i a l  conditions 

a r e  specif ied exactly. Thus when t h e  r e s u l t s  from t h e  present  theory are 

compared with e i the r  experimental results or t h e  r e s u l t s  of an ana ly t i ca l  

experiment, t h e  agreement is  good, and t h e  number of specif ied i n i t i a l  

conditions need be no grea te r  than t h e  number of quant i t ies  whose decay 

we can predict .  

For t h e  present purposes the  r e s u l t s  fo r  t h e  previous model 

11 

I t  
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Figure 8. -Comparison of present (higher order) 
theory with that of reference 5 for decay of the 
higher order spectral quantity R (Eq. (44)). 
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